Intel Xeon CPU
Basic GPU Dedicated Server - RTX 4060
Professional GPU Dedicated Server - P100
Basic GPU Dedicated Server - RTX 5060
Advanced GPU Dedicated Server - V100
Advanced GPU Dedicated Server - A4000
Advanced GPU Dedicated Server - A5000
Enterprise GPU Dedicated Server - RTX 4090
Enterprise GPU Dedicated Server - RTX A6000
Multi-GPU Dedicated Server - 3xV100
Enterprise GPU Dedicated Server - A100
Multi-GPU Dedicated Server - 3xRTX A6000
Multi-GPU Dedicated Server- 4xRTX 5090
Multi-GPU Dedicated Server - 4xRTX A6000
Multi-GPU Dedicated Server - 4xA100
Multi-GPU Dedicated Server - 8xRTX A6000
1. Choose a plan and place an order.
2. Install NVIDIA® CUDA® Toolkit & cuDNN.
3. Python 3.7, 3.8 or 3.9 recommended.
Sample: conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
import torch # check what version is installed print(torch.__version__) # construct a randomly initialized tensor x = torch.rand(5, 3) print(x) # check if your GPU driver and CUDA is enabled and accessible torch.cuda.is_available()
Intel Xeon CPU
SSD-Based Drives
Full Root/Admin Access
99.9% Uptime Guarantee
Dedicated IP
DDoS Protection
Easy to Learn
Higher Developer Productivity
Accelerated Computations
Effortless Data Parallelism
Scalability
Flexibility